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In FDG-PET imaging of thoracic tumors, blurring due to breathing motion often significantly
degrades the quality of the observed image, which then obscures the tumor boundary. We demon-
strate a deblurring technique that combines patient-specific motion estimates of tissue trajectories
with image deconvolution techniques, thereby partially eliminating breathing-motion induced arti-
facts. Two data sets were used to evaluate the methodology including mobile phantoms and clinical
images. The clinical images consist of PET/CT co-registered images of patients diagnosed with
lung cancer. A breathing motion model was used to locally estimate the location-dependent tissue
location probability function �TLP� due to breathing. The deconvolution process is carried by an
expectation-maximization �EM� iterative algorithm using the motion-based TLP. Several methods
were used to improve the robustness of the deblurring process by mitigating noise amplification and
compensating for motion estimate uncertainties. The mobile phantom study with controlled settings
demonstrated significant reduction in underestimation error of concentration in high activity case
without significant superiority between the different applied methods. In case of medium activity
concentration �moderate noise levels�, less improvement was reported �10%–15% reduction in
underestimation error relative to 15%–20% reduction in high concentration�. Residual denoising
using wavelets offered the best performance for this case. In the clinical data case, the image spatial
resolution was significantly improved, especially in the direction of greatest motion �cranio-caudal�.
The EM algorithm converged within 15 and 5 iterations in the large and small tumor cases,
respectively. A compromise between a figure-of-merit and entropy minimization was suggested as
a stopping criterion. Regularization techniques such as wavelets and Bayesian methods provided
further refinement by suppressing noise amplification. Our initial results show that the proposed
method provides a feasible framework for improving PET thoracic images, without the need for
gated/4-D PET imaging, when 4-D CT is available to estimate tumor motion. © 2006 American
Association of Physicists in Medicine. �DOI: 10.1118/1.2336500�
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I. INTRODUCTION

Recent years have witnessed increased use of positron emis-
sion tomography �PET�, specifically with 18F-FDG �fluoro-
2-deoxy-d-glucose� molecule which is a marker for increased
glycolysis. FDG-PET has been used to provide target volume
estimation in different cancer sites such as lung cancer,1 head
and neck cancer,2 cervical cancer,3 colorectal cancer,4

lymphoma,5 and breast cancer.6 Studies have demonstrated
that the physiological information of PET combined with
anatomical structures in CT can improve target volume ac-
curacy in radiotherapy treatment planning.1 Nevertheless,
there are several challenges that are impeding the growing
use of PET in treatment planning. PET images inherently
suffer from a low spatial resolution due to limited detector
efficiency and positron range effects.7 Physical limitations
also include noncollinearity of annihilated gamma rays and
uncertainty of their interaction location in the detector’s
crystals.8 Other sources of error are caused by the selected
reconstruction algorithm because of the tomographic nature
of PET acquisition,9 where such algorithms compromise

10
resolution for reduced image variance. Typically, recon-
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struction software provide means to correct for radiation at-
tenuation by tissue and photon scattering but not for degra-
dations in spatial resolution.11 This low resolution results in a
partial volume effect in acquired PET images, where the ra-
dioactivity concentration is smeared from one area to adja-
cent areas �spill-in or spill-out�.12 Correction algorithms for
partial volume effect have been widely proposed in the
literature.12–15 However, the most prevalent blurring artifact
in thoracic PET images is caused by breathing motion.16,17

Blur due to breathing motion would reduce average uptake
measurements up to 30%16,18 and could decrease detection
sensitivity noticeably, in particular for small lesions �less
than 15 mm in size� and those lesions close to the
diaphragm.16,19 On the other hand, in PET/CT systems, the
data sets are acquired off the gantry are intrinsically aligned:
however, the CT data are typically collected within a single
breath-hold while the acquisition of PET could take between
20 and 30 min, hence the final PET image is an aggregation
over multiple breathing cycles. Such difference in breathing
patterns would cause noticeable misregistration error and

consequently visible cold spots artifacts near the lung-
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diaphragm area if CT is used for attenuation correction of
PET.17,20 Beside the typical errors in locating peripheral and
basal lung structures, it is possible for objects below the
diaphragm �e.g., liver lesions� to appear in the lung base.21

Most treatment planning systems use CT images to con-
tour tumor volume and organ at risk structures. Therefore,
several methods have been proposed in literature to reduce
breathing artifacts during imaging and radiotherapy treat-
ments. Examples include voluntary or forced breath
holding,22–27 tumor tracking,28,29 and using external signal
with helical 4D CT30 or spirometry with multislice 4D
CT.31–33 A review of 4D CT methods and their role in treat-
ment planning could be found in Keall.34 Although PET/CT
systems reduce the complexity of registering 4D CT scans
with 4D PET scans, the image sets must be temporarily reg-
istered as they are not acquired at the same time.

Recently, Nehmeh et al.35 and Low et al.36 have reported
the variability of estimating a lesion’s activity due to breath-
ing motion in 4D PET/CT. Acquisition in 4D PET could be
based on respiratory-phase binning. This could be done ei-
ther by acquiring positron events only during a gated fraction
of the breathing cycle, or by binning according to the breath-
ing phase.18,35,37–39 Gating could improve the quantification
and the resolution of PET images. However, it requires ob-
taining sufficient scans and may require matching with CT
data in each gated phase or bin, which would make the ac-
quisition time too long.40,41 Nevertheless, in gating tech-
niques, the quality of the resulting images still depends on
the synchronization accuracy of the scanned data with the
respiratory cycle. This can result in motion artifacts if the
window size is too large.

Other suggested techniques require patients to hold breath
at mid-expiration or mid-inspiration, or acquire CT during
shallow breathing.17 It is questionable that simple averaging
or shallow breathing match blurring effect in PET due to the
complex nature of respiratory motion and its heterogeneous
influence on different tissues or organs. On the other hand,
artifacts will be produced if the patient failed to hold their
breath as instructed, which is typically the case in lung can-
cer patients. To alleviate these problems, techniques that fo-
cus on incorporating motion maps directly to correct for
breathing artifacts have been proposed. This is done by using
4D-CT motion estimates either to warp the 4D-PET data into
the same phase36,42 or to adjust the reconstruction algorithm
by combining all the projection data acquired at the different
phases.43

In this work, we demonstrate a new deblurring approach
that combines patient-specific motion estimates with image
deconvolution techniques to compensate for motion induced
artifacts in PET images. The proposed technique is currently
applied in the image spatial domain to compensate for aggre-
gated target motion artifacts. The reason for selecting the
image domain over the sinogram domain is because breath-
ing effects are better understood and motion trajectories are
more tractable to model in the image space.
Motion deblurring is viewed in this context as an inverse
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problem. Deconvolution techniques have been widely ap-
plied in optical analysis and video sequence processing to
restore the clarity of images.44–48 They have also been uti-
lized successfully to improve the quality of medical images
such as spiral CT acquisition49 or recently in small animal
PET studies,50 where a Gaussian kernel was used to model
scattering. Alternatively, blind deconvolution approaches
could be used. This would typically result in a Gaussian-like
kernel as well.51

In this framework, the imaging system is modeled by44–48

g�x� = h�x� � f�x� + n�x� , �1�

where g is the degraded image; f is the ideal true image; h is
a characteristic of the imaging system, typically referred to
as the point-spread-function; n is additive noise; x is the
spatial coordinate; and � is the convolution operator. De-
blurring or deconvolution in this context is defined as the
process of recovering an estimate of f�x� from g�x�.

Application of Eq. �1� requires knowledge of the point-
spread function or one would need to resort to blind decon-
volution techniques as in the spiral CT deblurring example49

or as in our previous work on static PET deblurring.51 In this
paper, we will only deal with the blurring effect of breathing
motion. Hence, we rename the point-spread function the tis-
sue location probability function �TLP�. It is important to
note that the intrinsic detector resolution and positron range
blurring effects could also be included in this deblurring ker-
nel, though we have not done that here. The tissue location
probability function is assumed to have finite support size
�i.e., it goes to zero within a certain distance�, it is positive or
zero everywhere, and is shift invariant within the region of
interest �the tumor�. This last assumption is not a necessity,
as deformable image registration methods could be used to
form shift-varying TLPs. Often in computer vision applica-
tions, a simple motion model is assumed for the TLP, such as
uniform velocity or simple harmonic motion.52 However, the
tumor motion due to breathing is more complex. Therefore,
in our approach we estimate the breathing motion model
directly from 4D CT measurements.30,31,33,34,53–57 Tidal vol-
ume and airflow data measured by spirometry are linearly
mapped into spatial trajectories.58 The model accounts for
the observed hysteresis-like behavior of the lung motion.56

The parameters of the linear model are estimated for each
patient case using a template matching algorithm applied to
breathing-phase-indexed CT data. The rationale for using CT
data for this step is that it provides a motion detection algo-
rithm with distinctive features easier to track than their coun-
terpart in PET. Moreover, 4D CT may often be available in
the absence of a true 4D PET implementation.

We use the motion model to locally estimate the TLP.59

The deconvolution process is carried out via an expectation-
maximization �EM� iterative algorithm using the motion-
based TLP. In our study, we have investigated various meth-
ods to account for noise amplification and uncertainties in
the estimated TLP. In addition, we have explored different
criteria to assess the EM algorithm convergence as discussed

in the following.



3589 El Naqa et al.: Deblurring of breathing motion artifacts in thoracic PET 3589
II. MATERIAL AND METHODS

The method was evaluated using an experimental mobile
phantom and clinical 4D PET/CT images. The proposed
method consists of three steps: �1� motion estimation, �2�
conversion of motion estimates into a tissue location prob-
ability function �the TLP, which plays the mathematical role
of the point spread function in the deconvolution process�,
and �3� the deconvolution process which is based on the TLP.
The block diagram in Fig. 1 sketches the role of convolution/
deconvolution in image blurring/deblurring.

A. Data sets

1. Experimental mobile phantom scan

A cylindrical phantom �Fig. 2�a�� was filled with an 18F
solution �initial activity of 12 kBq/mL� and three spherical
target phantoms of 1.0, 2.0, and 3.0 cm diameter were filled
with a 11C solution �initial activity of 170 kBq/mL�. Then, a
series of 10 min long scans were acquired with estimated
activities shown in Fig. 2�b�. The phantom was moved under
computer control with 1.0 and 2.0 cm amplitudes and alter-
nating each run, resulting in cycles of 2.0 and 4.0 cm motion
ranges. The PET scanner was synchronized to 20 acquisition
points between the 10 min cycles.

2. Clinical 4D CT and free breathing PET

The data set consisted of PET/CT co-registered images of
a patient diagnosed with lung cancer with two lung tumors
�Fig. 3�: one larger ��80 mm diameter� and one smaller
��19 mm diameter�. The PET images have an in-plane spa-
tial resolution of 5.3�5.3 mm/pixel and a slice thickness of
3.4 mm. The CT data have an in-plane spatial resolution of
0.94�0.94 mm/pixel and a slice thickness of 1.5 mm. The
tomographic reconstruction was done by ordered-subset
expectation-maximization.

B. Estimation of tumor location probability „TLP…
function from motion trajectories

The model we used to estimate the motion trajectories
was derived from a linear mapping of the tidal volume/

FIG. 1. A block diagram of imaging and convolution/deconvolution interac-
tion. Tissue motion effects can be removed from images via deconvolution,
which requires knowledge of the tissue location probability �TLP�.
airflow space into 3D space at different phases of the breath-
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ing cycle.58 According to this model, the displacement vector
�x�p� from a reference position at any point of time t could be
represented as:58

x�p�t� = x�v�t� + x�q�t� , �2�

where x�v�t� and x�q�t� are displacement vectors with magni-
tudes proportional to the tidal volume ��*�� and airflow
��*q�. The parameters �� ,�� of the model �proportionality
constants� were determined by fitting from measured posi-
tions using a template matching algorithm, where a template
of contoured tumor volume was tracked at different breath-
ing cycle phases. The matching was based on maximizing
the normalized cross-correlation between the template and
searched regions of the same size in the 4D CT data. The
location of the tumor was quantified by its center-of-mass. In
Eq. �2�, different tumor-location probability functions could
be derived, depending on the phase of the breathing cycle
under investigation, by changing the reference position.

Next, the tissue trajectories were used to derive the TLP

FIG. 2. Mobile phantom experiment setup. �a� Computer-controlled scan-
ning system and PET phantom with three spheres of diameters 1, 2, and
3 cm. �b� Measured target and background activities at different acquisition
times.
of the tumor motion that caused the blur. This was done by
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by tessellating �binning� the 3D probability density function,
in which we assume that the intensity at any location �x�, y�,
z�� is proportional to the probability �fraction of time� of
being at this location. The TLP was then smoothed by spline
interpolation and normalized to a total probability of one.59 It
should be emphasized that TLP should be sampled at an
appropriate rate, otherwise ringing effect �Gibb’s phenom-
ena� artifacts would be observed in the deblurred image.60

This is particularly true in small lesions, where the TLP was
sampled at an increased rate to avoid the ringing and the
image was upsampled to the same spatial resolution. After
deconvolution process, the image was downsampled back to
its original size.

The results for the large and the small tumors’ 3D TLP
estimates are shown in Figs. 4�c� and 4�d� �as iso-surface
images of the 3D probability at different voxel positions
Medical Physics, Vol. 33, No. 10, October 2006
from the reference�, in Figs. 4�a� and 4�b�, we show the 1D
histograms in each direction for comparison purposes.

C. Deconvolution

Deconvolution is an inverse filtering process, in which the
effects of convolution by a point spread function �TLP in our
method� that resulted in the blur are to be inverted.48 Given
the relation in �1�, this might sound like a straightforward
problem. However, there are several issues that need to be
cautiously addressed to achieve a good-quality solution: �1�
Motion is generally a spatially varying process, but decon-
volution methods generally rely on assuming that the blur is
spatially invariant. Therefore, we use a “localized” deconvo-
lution method, over a region small enough to assume that
variations in motion are negligible.46 �2� Direct inversion

FIG. 3. A patient PET/CT fused image
�left� with a large and small tumor en-
larged �right�.

FIG. 4. Histograms of linearly mod-
eled motion in each direction for �a�
large tumor and �b� small tumors; �c�
and �d� the corresponding estimated
3D TLP rendered surface after tessel-
lation, spline smoothing, and normal-
ization. Note the elongated ellipsoid
along the superior-inferior direction.
All dimensions are in mm.
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using Fourier-based methods would lead to amplification of
noise and degradation in the restored image.47,48 Therefore,
several regularized solutions have been proposed in the lit-
erature. A frequently used approach is the Wiener filter.61

However, the regularization parameter and the power spec-
trum of noise must be estimated. In addition, negative values
may appear in the solution. A better alternative is to use
methods with non-negativity constraints such as the mini-
mum residual norm with steepest descent, or the expectation
maximization method �EM�.45,62 The latter offers a more
flexible framework and was used in our study.

The EM-based estimate of the estimated unblurred image
f after the kth iteration is given by62

f̂ k+1�x� = f̂ k�x� · �h�− x� � � g�x�

h�x� � f̂ k�x�
�	 , �3�

where h is the motion-based TLP, g is the observed image,
and the negative sign �h�−x�� refers to reflection of the TLP
kernel. Multiplication and division are point-by-point within
the image. This basic iteration is also known as the
Richardson-Lucy iteration and could be derived from the
maximum likelihood of a Poisson distribution.

Accurate implementation of �3� requires complete knowl-
edge of the TLP, which is not always available. Sometimes
the TLP is partially known or is uncertain. In such cases,
methods of “myopic deconvolution” are applied, wherein
one accounts for the uncertainty in the TLP ��h�.63,64 Or, in
the extreme case, when the TLP is unknown, so-called “blind
deconvolution”65 is used. The term myopic is used to indi-
cate that the TLP is partially known only. The TLP is esti-
mated by reversing the roles of h and f in �3�, alternately
iteration between refining the TLP estimate and the un-
blurred image estimate.65 Another problem in �3� is the am-
plification of noise while iterating. Methods based on the
wavelet transform have demonstrated excellent results in de-
noising, beside the other advantages of multiresolution ap-
proach and the sparse representation of the wavelet
coefficients.60,66,67 One way of applying wavelet to the de-
convolution process is to track a residual error �R� as
follows:60,68

Rk�x� = g�x� − h�x� � f̂ k�x� . �4�

Then, by using a translation invariant transform:

Rk�x� = cj + 

j=1

J

Wj�x� , �5�

where cj is the low-pass filtered version at scale j; J is the
total number of scales, and the Wj are the wavelet coeffi-
cients. Then, the wavelet coefficients are thresholded to ex-
tract only the significant structures from the residuals at each

iteration R̂k. After the residual is wavelet-denoised, the regu-
larization effect could be incorporated into the algorithm ei-

ther by a weighted addition to f̂ k�x� to comprise the next
iteration �referred to as the Van Cittert’s method�,69,70 or by

ˆ
recomputing g�x� from Eq. �4� using Rk and applying it in
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Eq. �3� to yield the next estimate of f̂ . In this work, we have
chosen the second approach because it does not require fur-
ther trial and error to estimate the weighting factor in Van
Cittert’s method. In this realm, wavelets suppress noise in a
natural way during the deconvolution process, whereas Fou-
rier low-pass filtering has difficulty controlling
deconvolution-induced noise. Note that in our implementa-
tion, the convolution process was performed in the Fourier
domain to achieve high efficiency �even though wavelet
hard-threshold denoising is still applied at each iteration�.

We used the 9,7-biorthogonal basis functions of the wave-
let transform, which are used in the JPEG2000 standard.71,72

Furthermore, “Spin-cycling,” which refers to choosing nine
different nearest-neighbor points in the image as computa-
tional centers, was used to reduce small artifacts introduced
by the wavelet transform.66 The hard-threshold value is given
as percentage of the maximum wavelet’s coefficient values.
The 2D transform is applied to each 3D image slice. This is
a limitation in our implementation, but it is not a trivial task
to generalize these basis functions to fully 3D.

We also investigated the use of image priors in a Bayesian
framework and the effect of TLP uncertainty. In the case of
Bayesian deconvolution, a Poisson maximum a posteriori
estimate would yield the following iteration:

f̂ k+1�x� = f̂ k�x� · exp�� g�x�

h�x� � f̂ k�x�
− 1� � h�− x�	 . �6�

The exponential term in this case would enforce the positiv-
ity constraint and regularize the solution.

In order to account for uncertainty, a myopic method was
used, where the initial estimate �guess� was set to the known
TLP, and the double-alternating iterative method was used to
simultaneously update the TLP and deconvolve the image.

III. EXPERIMENTAL RESULTS

A. Application to mobile phantom scan

We conducted experiments using a mobile phantom scan
at different activity concentration levels �see Fig. 2�b�� and
different ranges of motion �2 and 4 cm�. The activities were
divided into three categories: �1� High activity �greater than
80 kBq/mL�, �2� medium activity �between 30 and
80 kBq/mL�, �3� low activity �less than 30 kBq/mL�. Each
category had cases of short motion range �2 cm� and long
motion range �4 cm� with estimated 1D TLP shown in Fig. 5.
The average activity concentration in each sphere was mea-
sured within the region-of-interest �ROI� since the sphere is
of known location and diameter using the phantom at rest
�static phantom as a reference�, sample images of the static
reference sphere images at different concentration are shown
in Fig. 6. Motion simulated images are shown in Fig. 7. Note
the resulting “hotdog” like images. Quantitatively, motion
blur results in underestimation of the PET activity concen-
tration. In Fig. 8, we summarize the results of applying the
different deconvolution algorithms and we show the result-
ing error after applying each method. The parameters for

each of the methods have been fixed throughout the experi-
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ments to provide a baseline comparison. For each method,
the parameters are optimized so that over-deblurring and
noise amplification are minimized. For basic EM deconvolu-
tion �Eq. �3��, the number of iterations was set to 3, as well
as for blind and myopic deconvolution. In case of Bayesian
deconvolution the number of iterations was set to 5 and in
case of wavelet deconvolution, the number of iterations was
also 5, and the threshold is 10%. Regularized algorithms can

FIG. 5. Estimated TLP of mobile phantom with motion ranges of 2 and
4 cm.

FIG. 6. Phantom static �at rest� reference images in coronal view with 1, 2,
and 3 cm spheres diameters �left to right�. �a� At high activity concentration
�low noise� of 4 cm motion, �b� medium activity concentration �moderate
noise� of 2 cm motion, �c� low activity concentration �very high noise� of

4 cm motion range.
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tolerate larger number of iterations without generating arti-
facts. In the case of high activity concentration �Figs. 8�a�
and 8�b��, the different deconvolution methods resulted in
15%–20% reduction of underestimation error. Moreover, in
shorter motion case �Fig. 8�b�� the error is almost within
±5% for 2- and 3-cm-diam spheres. The larger the motion
the more residual error would remain. Note that in practical
situations further improvement could be achieved by increas-
ing the number of iterations for each case �see Fig. 9�. The
best performance was obtained by the Bayesian and the
wavelet methods, but the improvement was subtle over basic
EM. However, in case of medium concentration the wavelet
method provided significant improvements over other tech-
niques. But in the case of low activity, none of the methods
provided substantial improvement except in the case of small
motion and large sphere �Fig. 8�f��, where the error was less
than 2%, though over-deblurring is noticed. Sample results
of applying the different deconvolution methods to the me-
dium concentration case with 2 cm motion are presented in
Fig. 10.

B. Application to clinical PET data

We also evaluated the proposed motion-based deblurring
algorithm on a co-registered patient PET/CT data set, con-

FIG. 7. Motion simulated phantom image in coronal view with 1, 2, and
3 cm spheres diameters �left to right�. �a� At high activity concentration �low
noise� of 4 cm motion, �b� medium activity concentration �moderate noise�
of 2 cm motion, �c� low activity concentration �very high noise� of 4 cm
motion range. Note the “hotdog” shape due to motion �a� and �c� of 4 cm
and �b� of 2 cm. Moreover, blurring has the advantage of “smoothing” the
noise, however, distorting the shape. So, a chosen deconvolution method
should restore the shape without amplifying the noise.
taining two lung tumors, one much larger than the other, as
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FIG. 8. Evaluation analysis of mobile phantom experiments showing percentage of activity concentration underestimation error with different methods. The
error bars represent one standard error of voxel intensity deviation within the region-of-interest. �a� High activity concentration �low noise� with 4 cm range
of motion, �b� high activity concentration �low noise� with 2 cm range of motion, �c� medium activity concentration �moderate noise� with 4 cm range of
motion, �d� medium activity concentration �moderate noise� with 2 cm range of motion, �e� low activity concentration �high noise� with 4 cm range of motion,
�f� low activity concentration �high noise� with 2 cm range of motion.
Medical Physics, Vol. 33, No. 10, October 2006
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shown in Fig. 3. In the absence of a “true image” as a bench-
mark, we used the following metrics for quantitative evalu-
ation of the deblurred PET data.

FIG. 9. EM deconvolved phantom image in coronal view with 1, 2, and
3 cm spheres diameters �left to right�. �a� At high activity concentration �low
noise� of 4 cm motion �10 EM iterations�, �b� medium activity concentration
�moderate noise� of 2 cm motion �5 EM� iterations, �c� low activity concen-
tration �very high noise� of 4 cm motion range �3 EM iterations�.
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1. A figure-of-merit (FOM): this metric is frequently used
in the deconvolution literature, and is defined as the mean-
squared-difference between the blurred and the estimated de-
blurred image after convolution with the TLP �reblurred�.

FIG. 10. A comparison of the different deconvolution methods applied to
medium activity sphere of 2 cm diameter and 2 cm range of motion. �a�
Original coronal view; �b� EM deblurred with 5 iterations; �c� blind decon-
volution with 5 iterations; �d� myopic deconvolution with 5 iterations; �e�
Bayesian deconvolution with 10 iterations; �f� wavelet-based deconvolution
with a threshold of 10% and after 10 iterations.

FIG. 11. Quantitative analysis of EM
deconvolution for clinical PET data.
�a� Figure-of-merit �FOM� vs the
number of the EM iterations for the
large and the small lung tumors. The
deconvolution converged within 15 it-
erations in both cases; �b� entropy vs
number of iterations; �c� normalized
mean-squared-error �NMSE� vs num-
ber of iterations; �d� roughness vs
number of iterations. Note from the
entropy graph, the minima achieved in
the case of the small tumor around 5
iterations. This suggests early stopping
of EM iterations.
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2. Shannon’s entropy: This is a measure of uncertainty.
Deblurring is a process of recovering the signal, i.e., increas-
ing our information �minimizing entropy�. For instance, an
impulse signal after blurring tends to spread out. The metric
is given by

entropy ratio =
Ed

Ep
, �7�

where Ed is the entropy of the deconvolved image, Ep is the
entropy of the original PET image. Entropy is defined as

E= 

i=1

N

piln�pi�, where p is estimated from the image histo-

gram with N bins.
3. Normalized mean squared error (NMSE): defined as

the variance of the difference between the blurred and de-
blurred images scaled by the blurred variance. This is a com-
mon metric in restoration problems and in this case it pro-
vides a measure of the aggressiveness of deblurring. This
metric essentially just monitors the difference between the
deblurred image and the original blurred image.

4. Roughness: is defined as the square root of the median
of the squared Laplacian �second-order derivative of the lo-
cal image intensity region�. The median operator makes the
metric nearly independent of small regions or large values
�near sharp edges or corners�.66 This metric monitors the
aggressiveness of the deconvolution. At early stages it in-
creases due to deblurring/sharpening; in later iterations
roughness increases further due to deconvolution noise am-
plification.

The figure-of-merit measures convergence for an ideal
TLP, but this may not be possible in practical situations
where our knowledge of the TLP is incomplete due to uncer-

FIG. 12. Deconvolution results for the large tumor using a different number
of EM iterations. �a� original coronal view �direction of largest motion� for
the large tumor; �b� after 5 iterations; �c� after 10 iterations; �d� after 15
iterations �converged according to FOM�; �e� after 20 iterations; and �f� after
50 iterations. Note the presence of visible artifacts in this case.
tainties in motion estimation, noise amplification, and other
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undetermined factors that could contribute to the blurriness.
Hence, “early stopping” rules become necessary.

In Fig. 4, we show histograms of the motions in each
direction and the estimated 3D TLP for both tumors. Evalu-
ation using the metrics is shown in Fig. 11. For the larger
tumor, following the guidance of FOM �Fig. 11�a��, the met-
ric indicates convergence of the deconvolution process
around 15 iterations �range from 10 to 20�; the other metrics
did not support early stopping. However, in the case of the
smaller tumor, FOM again shows convergence of the decon-
volution process around 15 iterations �range from 10 to 20�,

FIG. 13. Deconvolution results for the small tumor. �a� Original coronal
view; �b� deblurring without accounting for limited support size. Note the
ringing effects. The EM results after resampling correction. �c� After 2 it-
erations; �d� after 5 iterations �early stopping is recommended according to
entropy�; �e� after 10 iterations; �f� after 15 iterations �converged according
to FOM, but notice the noise artifacts�; and �g� after 20 iterations.
but the entropy metric �Fig. 11�b�� shows a minimum at
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around 5–6 iterations, after which the entropy increases. This
suggests that noise amplification is overtaking the deblurring
process causing an increase of entropy. Hence, this indicates
a termination point. Such trends are also observed in Figs. 12
and 13.

In Figs. 12 and 13 we show results in the coronal view
since most of the effect takes place in the cranio-caudal di-
rection. Moreover, in Fig. 13 we also show the ringing effect
in case of the small tumor eliminated by sampling the TLP at
a higher rate.

C. Modifications to the deconvolution method

We incorporated wavelet denoising into the deconvolution
process to mitigate the effect of noise amplification. We also
experimented with using Bayesian priors and myopic decon-
volution �partially known TLP� and the extreme case of no
knowledge to simulate uncertainties in TLP.

In Figs. 14 and 15, we show the estimates of the different
quantitative metrics for the large and small tumor and in
Figs. 16 and 17 we provide a representative sample of

FIG. 14. A quantitative comparison of the different deconvolution methods a
the blind deconvolution and the variation in myopic deconvolution after 10 it
to over-deblur the image with a Gaussian-type PSF; �c� NMSE vs numbe
�threshold � 1%� and the Bayesian deconvolution yielded comparable perfo
results.
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It is seen in Figs. 14�a�, 15�a�, 16�c�, and 17�c� that blind
deconvolution did not converge. We initially estimated the
TLP to be constant with a support size equal to the motion
estimated TLP. The myopic deconvolution was stopped early
at 10 iterations. The wavelet-based deconvolution and the
Bayesian approach yielded similar performances. Similar
conclusions could be deduced from the entropy results in
Figs. 14�b� and 15�b�. However, blind deconvolution had a
relatively faster reduction in entropy as there is no distinction
in the algorithm between the motion deblurring and other
residual deblurring.

Compared to the EM methods, wavelet-based deconvolu-
tion with an empirical threshold value of 1% resulted in the
most visually appealing images, and seems promising for
further research �see Figs. 16�f� and 17�f��. This is due to the
fact that the original EM method is not immune to noise
amplification.

IV. DISCUSSION

The aim of this study was to investigate new deconvolu-

d to the large tumor. �a� FOM vs number of iterations, note the overshoot in
ns; �b� entropy vs number of iterations, where the blind deconvolution tends
iterations; and �d� roughness vs number of iterations. The wavelet-based
ces �the curves are quite close to each other relative to the other methods�.
pplie
eratio
r of
tion methods for respiratory motion compensation in thoracic
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PET images. We believe that deconvolution could be used as
a postprocessing tool to mitigate the blurring artifacts of
breathing motion and could be used as an alternative for
externally triggered gating and other binning techniques.
However, deblurring is an ill-posed inverse problem with no
unique optimal solution. Therefore, in our investigation we
noticed that the following requirements need to be carefully
considered in order to successfully apply deconvolution for
deblurring of motion artifacts in PET images. First, an accu-
rate estimation of the motion trajectory is required, which
can be obtained from 4D CT. The patient-specific model
plays a vital role in shaping the deblurring results. In our
case, we used a recently developed breathing motion model58

that maps measured patient’s tidal volume and airflow to
spatial positions in the image domain. Hence, it is important
to note that the probability density function we used is con-
fined to positional blurring only �the TLP� rather than includ-
ing other factors related to image system blurring. Combin-
ing the TLP kernel with an image system blurring kernel
would potentially be advantageous. We attempted to account
for uncertainty in the estimated TLP by using a “myopic”

FIG. 15. A quantitative comparison of the different deconvolution method
overshoot in the blind deconvolution; �b� entropy vs number of iterations, wh
PSF. In this case, entropy suggests an early stopping of 5–6 iterations; �c�
wavelet-based �threshold � 1%� and the Bayesian deconvolution yielded c
methods�.
s applied to the small tumor. �a� FOM vs number of iterations, note again the
ere the blind deconvolution tends to over-deblurr the image with a Gaussian-type
NMSE vs number of iterations; and �d� roughness vs number of iterations. The
lose performances �the curves are quite close to each other relative to the other
approach �assuming partially known blur�; however, our
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FIG. 16. A comparison of the different deconvolution methods applied to the
large tumor. �a� Original coronal view; �b� EM deblurred with 15 iterations;
�c� blind deconvolution with 10 iterations; �d� myopic deconvolution with
10 iterations; �e� Bayesian deconvolution with 15 iterations; �f� wavelet-

based deconvolution with a threshold of 1% and after 15 iterations.
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simulations showed this to be of limited advantage, possibly
due to the fact the algorithm would stray between different
blurring sources, or indicating the need for explicitly includ-
ing the uncertainty in the point spread function.73 On the
other hand, simulations with blind deconvolution in most
cases resulted in artifacts when motion is present. The sec-
ond consideration is the size of the TLP support relative to
the object. If the size of the object is too small this will cause
ringing effects, known as Gibbs phenomena. To alleviate this
problem in small tumors, we applied deconvolution at a sam-
pling rate higher than the typical voxel size. In this case, the
tumor area was up-sampled �by a factor of 5� to a finer grid
similar to that of the high rate TLP. We then performed the

FIG. 17. A comparison of the different deconvolution methods applied to the
small tumor. �a� Original coronal view; �b� EM deblurred with 5 iterations;
�c� blind deconvolution with 5 iterations; �d� myopic deconvolution with 5
iterations; �e� Bayesian deconvolution with 5 iterations; �f� wavelet-based
deconvolution with threshold of 1% and after 5 iterations.
deconvolution on this finer grid, and down-sampled the re-
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sults to the original size. This process introduces blurring due
to interpolation, but this could be partially eliminated by in-
creasing the number of iterations in the EM algorithm. A
third issue is that deconvolution is “valid” only within its
region of interest. If no shift-varying techniques are em-
ployed, the algorithm may well generate undesirable arti-
facts. Finally, to resolve the dilemma of sharpening versus
noise amplification that is prevalent in deconvolution, we
have investigated two regularization methods: wavelet de-
noising of residuals after each iteration, or using Bayesian
priors. Both methods seemed to reduce the noise degrada-
tion, especially in the case of wavelet, which provided over-
all the best performance. Other wavelet-based methods could
be applied with direct extension to 3D and employment of
shrinkage methods for automated selection of the threshold
value, which may offer better solutions.74 Moreover, other
denoising methods75 such as anisotropic diffusion could be
investigated as well. By the same token, the Bayesian ap-
proach could be further enhanced by deriving more informed
priors.

Applying the explored deconvolution methods to the dif-
ferent data sets demonstrated underestimation error reduction
by about 10%–20% using the wavelet method. The improve-
ment is noticed to be better when the object size is larger and
the motion range is smaller. This could be attributed to the
interplay among ringing effects, noise amplification, and
number of iterations on the convergence of the EM algo-
rithm. At low noise level �high activity concentration�, the
methods provided similar performances with an average re-
duction of underestimation error of 15%–20%. At medium
noise level �medium activity concentration�, the wavelet of-
fered the best correction. At high noise �low activity concen-
tration�, none of the methods seem to offer improvement for
the small object and modest improvements were observed
for the larger objects. In case of real clinical data, where no
truth is known, we investigated several metrics to quantify
the selection of the deconvolution parameters, specifically
the number of EM iterations. Our simulations suggest that a
good criterion would be to compromise between conver-
gence as indicated by the figure-of-merit and increase of en-
tropy, which indicates noise amplification.

A main limitation of the deconvolution methods is that
they work on the aggregated image and not on phase by
phase basis. However, this means that no breathing-phase
tracking is required during acquisition, hence, less computa-
tional burden and discomfort to the patient. Previously pub-
lished methods to address PET breathing motion effects have
focused on correcting acquired events in list mode and rebin-
ning the sinogram data before reconstruction,76 but such
methods suffer from missing data artifacts. This could be
alleviated for simple uniform motion patterns;77 however, in
the case of complex respiratory motion this could be a chal-
lenging task and a possible direction for future work.

V. CONCLUSIONS

We have introduced the concept of deblurring time-

averaged PET images to control for the effect of breathing
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motion. The method may be a simpler and less time consum-
ing alternative to requiring breathing monitoring and fully
4D event-binning, reconstruction, and re-registration �i.e.,
registering images taken at varying breathing
phases�.19,30,35,39,40,53 Several deconvolution methods have
been examined, including methods which require little infor-
mation about the breathing pattern motion of the tumor �only
partially successful� to more accurate methods which require
approximate tumor trajectories during breathing. The initial
results show that the method is promising for either large or
small tumors. Our results indicate that using the wavelet-
based techniques and Bayesian estimation provided the best
performance for motion deblurring. Issues to be further in-
vestigated to fully establish and validate the proposed
method for clinical use include testing on more clinical data
sets and robustness to uncertainties in the motion model de-
rived from the corresponding 4D CT scan.
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